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G
e treat tﬁf/linear model )Y, = g} B + Z; where C. is a known vector, B is an

unknown parametér, and Var z; is a function of |Cz B| which is known, except
= il Theta Rk s

o~ % A A

“~* for a parameter 6. For simultaneous M-estimatesr—S—end~ﬂ{*EE)show that

3 -% £ S A T R :
(6-8) = O_(N-°), and® find the limit distribution of N°(B-B).m For the special
g e’ 3 :

case of least squares estimation, this limit distribution is the same as the

limit distribution of the weighted least squarefiysing the weights,

w.= (Var Zi)-lf‘and in general the distribution is that of a "ﬁeighted

i ! M-estimate®“using these weights. Moreover, the covariance matrix of the
limit distribution can be consistently estimated, so large sample confidence

ellipsoids and tests of hypotheses cencerning -8 are feasible.
s
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1. Introduction. Consider the linear model

and
T,=Cl B, for i = 1,...,N
i _i_, 9 e eyiy
where el,...,eN are i.i.d. with distribution F’Ei(=9iN) are known elements in
RP, B is a vector parameter in RP, and 0y»+-+s0y are constants, which express

the possible heteroscedasticity of the model. If F were a normal distribution

function and the o, were known then the minimum variance unbiased estimator

A
of B would be the weighted least squares estimator §W’ which is the solution to
D e IS s
(1.1) igl P((Y;-C; B,)/0;) = minimum,
where p(x) = xz. If F has heavy tails compared with the Gaussian distribution

or gross errors are possibly present in the data, then one may wish to replace

p(x) = x2 with a function such that § = p' is bounded. Such estimators have

been called M-estimators by Huber (1964, 1973), because they are generali-
zations of maximum likelihood estimators. If the oi are not known it may
still be possible to estimate them. For example, Fuller and Rao (1978) con-
sider the case where the Yi occur in groups for which oy is constant, and

Box and Hill (1974) assume that

6
1.2) 0;(0) = o, = olril

for an unknown parameter 6 and estimate both 6 and B by Bayesian methods.
Both Fuller and Rao and Bo* and Hill treat only Gaussian errors.

Anscombe (1961) has proposed tests of heteroscedasticity, and Bickel ;
(1978) has developed robust versions of these, but neither has considered -
modifying the estimate of B if the null hypothesis of homoscedasticity is rejected. ::]

In many empirical studies, one finds that the dispersion of the residuals i-d
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increases with the magnitude of the fitted values, so that it is reasonable
to assume that 0, = O(ITiI) for some nondecreasing function o. While the

power family (1.2) may be sufficiently rich to model this phenomenon (although

it has obvious difficulties in practice when = 0), we prefer to study the

general class,

(1.3) o, = exp(h(t))’ ),

where 0 is a parameter in RY and h is a known function from R! to RY .
Notice that choosing hl(ri) =1 (h1 is the first coordinate of h), exp(el)

becomes a scale parameter ; as a result, our estimate of B will be scale

equivariant regardless of the choice of p. Two choices of h which have no
practical difficulties when T,= 0 are h(1) = (1, log(1+|t])) and h(t) = (1,|t]).
To motivate our method, suppose F is standard normal so that the log-

likelihood is

HeZ

LOG8,8) = - 3 ) {log 2 + log of + ((¥,-7,)/0)%} .

i=1
If 8 were known, (1.1) would yield the MLE for B, while if B were known, the

MLE of 6 would solve

N
(1.4) I L(t-1,)/0,6))% - 1} h(r,) = 0.

i=1

A reasonable computational alternative to solving (1.1) and (1.4) simultaneous-

ly might consist of (i) obtaining a preliminary estimate of B (such as the least
squares estimate) and hence estimates for Tl""’Tn (ii) solve (1.4) using
these estimates, thus obtaining estimates of 01,...,0n, which (iii) are used

to solve (1.1).

We thus suggest the following procedure. First, a preliminary estimate 1
A

By of B is calculated and assumed to satisfy

(1.5) (éo- B) = OP(N'J’)-
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Examples of estimates satisfying (1.5) are given in Section 5. At the second

A
stage, define ti = QI §0 and obtain robustified estimates of 6 by solving the

following analogue of (1.4):

N 2 p T A
(1.6) I Wy~ exp(-h(t,)" 8)) - £} h(t;) = 0O,
i=1

where |y is monotone nondecreasing and § = sz(a), the expectation being taken

under the standard normal distribution. Clearly, Y(x) = x leads to (1.4).

At the third stage, we now solve a robust version of (1.1):

N
T Lo A
L v(0y-c; B /o ¢ =0,

1.7
i=1

where

(1.8) 5 = exp(-h(tp] 9).

Our main result (Theorem 4.1) lists conditions under which the limit dis-

A
tribution of B defined by (1.5)-(1.8) is the same as that of the estimate which

could be found by solving (1.7) when oi”"'ON are knoum. In Section 2 we

introduce notation and assumptions. Section 3 demonstrates that

(1.9) - op(N‘*) :

In Section 4 we state and prove the main result.

Remarks.
A

A If one assumes homoscedasticity (o.1 Z o), then hﬂri) = 1. The estimate E_be-

comes an ordinary robust regression estimate with preliminary estimate of

scale given by (1.5)-(1.6). Scc Maronna and Yohai (1979) for further details.

B We do not know if iterating (1.5)-(1.8) will lead to convergence. Further, we

do not know whether simultaneous solution of (1.6)-(1.7) is possible.
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C  Throughout the paper, we will use the following convention. For a real function

f on a space X, we say that x. solves f(x) = 0 if

0

(1.10) |£(xg)| < 2 inf |£(x)].
X

With this convention, all our estimators will exist but need not be unique.

However, our asymptotic results hold for every appropriate sequence of esti-

mators.

D The Box and Cox (1964) transformations form an alternative method for dealing ;
with heteroscedasticity, as well as other deviations from the normal linear

model. Defining

v 5w ( # 0)

log Y (A =0),

they postulate that for some A, Y(X) satisfies a homoscedastic normal linear
model. Their methodology is based upon an entirely different model from ours, ii
but a practitioner might consider using both on a given data set. Carroll
(1978) and Bickel and Doksum (1978) independently studied both Box-Cox and
robustified Box-Cox methods and concluded that variances of the estimated coef-

ficients in the linear model are often much larger when A is estimated than

when it is known. Therefore, confidence intervals and tests of hypotheses which
are constructed as if A were known and not estimated are invalid.

In contrast, we show in Section 4 that, if the errors, e;» are symmetrically
distributed or Y(x) = x, then for our method, the variances of estimated coef-
ficients when 8 is estimated are similar to those when 6 is known, and confidence

intervals and tests can be validly constructed as if 8 were known.

e e  ——
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2. Assumptions and notations. Let y be a nondecreasing function from
; R to R1 which satisfies
3 B1. Ey(e,) = 0,
B2. 0 < sz(el) A E e

for some a > 0

BS.  EY((e,+r)(1+s)) = AW T+ O(|r|M*® + |5 |1
as r*>0and s > 0 with A(y) > O,
Ba. BV ((e,+r)(145)) - £ = A@D) s + o([x|1*® + |s|1*%

as r ~ 0 and s + 0 with A(W%) > 0,

BS. there exists C0 such that for all 6< 1

1im sup E{sup|¢((el+r)(l+5)) - ¢((el+r')(1*5'))|=
k+0 ) ‘

Izl (2 [. [s], Is*| < k and |r=¢], |s-s'] < k6}

< Coé
for both ¢ = Y and ¢ = wz, and
B6. lim E(4((e;+r) (1+s)) - 6(e))” = 0
T,s>0)

for both ¢ = Y and ¢ = wz.

The function h from R! to RY, ¢, in RP and L QI B, satisfy

B7. tim (sup ([Ic; || + @ )NH) = 0,
N+0 isN %
N
BS. sup N1 T 1Ig 112 e b <o,
N o S -

B9. Letting X be the minimum eigenvalue of

. .
He =N L her) hr)T
i=1
then

lim inf AN = Aw >0
N-o

B10. h is Lipschitz continuous on an interval (possibly infinite), I, such

that Ti is in I for all i and N,
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BIL.  inf inf h(r,)" 0 > -=

oy N ixsN

Bl12. letting d, = gi exp(-hﬁfi)T 0),

N 1
N1Y a4 =5 +s (positive definite).
j=1 11 N
Remark. The monotonicity of § is needed only to prove "N - consistency

A A
of 8 and 6.
The conditions B1l-B6 aré notationally complex but widely applicable.

3 They clearly hold for p(x) = x2/2 Wx) = x) if Ee,= 0, el < o, where

1
A(p) = 1, A(wz) = Zﬁef . If F is symmetric and § is odd, Bl1-B6 can be veri-

fied if (i) ¥ is constant outside an interval (ii) ¢ is Lipschitz continuous R

and twice boundedly differentiable except possibly at a finife number of points,
al,...,ak (iii) F is Lipschitz continuous in neighborhoods of O ERRRTL Qnd
(iv) sz(el), Ep' (e)) and Eelw(el) w'(el) are all positive. Then A(y) = EY'(e,;)
and A(W?) = 2Bej¥(e,) ¥'(e)).

For the power model (1.2), h(x) = (1, log [xl),9_= (log 0,8) and B10, Bl1l
hold if

(2.1) inf inf |ri| > 9.
N 1<isN

Since the power model (1.2) makes little sense when Ti= 0, (2.1) is reasonable.

To avoid this difficulty, in Section 1 we suggested h(x) = (1, log(l+|x|)), for

which B10, B1l hold. The other example h(x) = (1,|x|) will satisfy B10, Bll

as long as the {Ti} are uniformly bounded.
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3. Estimation of 0.

A _% .
Theorem 3.1, Suppose B1-B8 hold, (§o-_) = q’(N ) i t, = C.
any solution (see 1.10) to

g T
(3.1) I 7 (0Y;-t;) exp(-h(t;)” ©)) - €} h(z;) = 0.

i=1 i i

Then

-%
3.2 L
(3.2) 9 Op(N ¥.

Proof. For Al in Rp, A2 in rY and

b= (8,8, define h; (&) = h(t;+C] A, N),
1 L
(3.3) oV )= exp{—ni(A)TAzN e - hi(g))Tg} - 1

(3.4) aP @) = N¥ gl a (see B12)

Then let ¢i(x,y,z) = wz((x+z)(1+y)) - £ and define the process

n

)

o LNF
W (@) = N

s 52
L 40 @0, W) b ®.

1

Note that (3.1) can be rewritten as

A % A
W (N (B-B), N?(8-8)) = o.

By Bl and Chebyshev's inequality,
(3.5) W (© =0 ),
so that by our convention (1.10),
A A
Wy O (B-8), N @) = 0 (D).

We can therefore prove (3.2) by showing that for each M1>0, €>0, Q>0

there exists M2>0 such that
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(3.6) p( inf W@ 1] > Q
a1 1<M 2

1
118,11 2M,

We will prove (3.6) by modifying the proof of Juretkova's (1977) Lemma 5.2.

1-¢

We first apply Theorem A.1 of the appendix, with x, = hi(g) and
ags)(é) = Ei(é) - Ei(g)' Then B1-B8, B10, Bll imply that the assumptions of
Theorem A.1 are met with g.= 1, A(4,i) = A(¥°), so that for all M>0,
n
sup | [Wy(®) - W, (@ - AGHNF ] herpalV @)
TNE i1
=0.(1).
p( )
By a Taylor series expansion,

3

o @ = N*hepT )+ by @-n )T o e

Thus, by B9, setting

-% s T
GN@ = N7 L Ay Oy ©@-hy @) 8,
1=

2 %
(3.7) IIATTEM”WN@ - Wy(0) - AWDHB, + G| = o ().

Now fix €>0, M,>0, Q>0. Use (3.5) to choose Yy such that

1
pUIW @] = v/2) < e/2.
Define

D=sup su lIGN(é)Il'
SENIEN

Then D<x (GN depends only on Al). Define M2 by

(AWHAM/2 - ¥ - D] = Q.

Using B9 and (3.7), find NO such that AN 2 A /2 and

2 Y
p[HZUT . B - @ - AW, Gl <X

2 2
IIED

21 - ¢g/2 (NzNo).
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If [|8,]] = M,, |18, =M, and N 2 Ny, then with probability at least 1-e,
By
] 2 -M,||W (0)||+ATHAA(w2)-MD-My/2
A = T2VTN = 20 2 2
3 2
2 [A((p ) AmM /2 = Yk D]Mz = QMz'
4
b3 Since Y is nondecreasing, AZWN(AI,AZS) is a nondecreasing function of s. Thus,
IIAzll > M, implies
-1
SNORFANCRIPIHTTES
=i =1
> 118,110
Thus,
A D
A, <M 2 Q| 2 1-¢
1 1 A
11A,5112M, 2
which with the Cauchy-Schwarz inequality proves (3.2). 0
A
4. Estimation of 8. The limiting distribution of B is a simple consequence
of the following representation.
& o
; Theorem 4.1, Suppose Bl to B12 hold and A(y) > 0. Then if B is any solu-
: tion (see (1.10)) to
N o
4.1) § wer,-cl B) exp(-nct,)T B)c, exp(-het;)T 8) = 0
e ; AR e U e e RS S |
%- : T 2 -k A |
g with t. = Ei §0, (@0-§)= Op(N ), and 6 satisfying (3.2), then
3 N
& A - = -
v (4.2) NEp =N T sTapepamn ™+ o).
i=1 ‘

This result, strcngthened so that the remainder is o(1) almost surely, has been

established in the homoscedastic case by Carroll and Ruppert (1979).




Proof . For él and éﬁ in Rp, éz in RY and A= (éi’AQ’és)’ define
A (1) _nE LT
— SRICRL S Y

. T -5
h; (@) =h(r; +C; 4, N7),

e A o

: aP ) = exp-h; W7 8, N ¥+ (v, 0)-n, @) T0) - 1,
and _
oW =g P |
; Define the process %
' b = NEL vie D @) asal? @)@+l @),
A = |
Note that (4.1) can be rewritten as E

(4.3)

;5 A ;2, A A o
Ugy(N“(B-B), N"(8-8), N"(By-B)) = O.

Letting giE 1,¢i(ei,r,s) = ¢((ei+ r)(1 +s)), and A(Y,i) = A(Y), the conditions

of Theorem A.l1 are implied by Bl, B3, BS to B8, Bll, and B12, so for all M>0

R OT—

(4.4) su | |uy(8) - U,(0) - A@W) SA.|| = o (1).
bl o o s

Now by Chebyshev's theorem and Bl, ' .
Uy (© = 0 ().

Therefore, if we set i

>
*
]

-(aws) ! Uy(0), then

A*

BN ——————t

Op(l)

and therefore, by (4.4)

U(a*) = o,(1).

e ——
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Consequently, by (4.3) and our convention (1.10),

¥ A 3 A A 4
(4.5) 0, 0¥ B-8), N @-0), N¥(8)-8)) = o, (1.
By Theorem 3.1, (6;9) = Op(N'%), so we need only establish that

¥

A -
(4.6) (8-8) = Op(N )

to conclude from (4.3) and (4.4) that (4.2) holds. But by (4.5), (4.6) holds

if for each n>0, €>0, and M1 there exists M2 satisfying

a.7) inf ||UN(é)||>n) >1 - €.

P( inf inf
INIENINER e

3 '
Now (4.7) follows from (4.4) in a manner quite similar to Jureckova's (1977)

proof of her Lemma 5.2. a
Corollary 4.2. If sz(el) < o and the assumptions of Theorem 4.1 are met,
then

D

NEB-8) - N(O, STVEVE(e)) AGDTDY .

Proof. Use (4.2) and Loeve's (1963, p 316) Normal Convergence Criterion

A D < =
to show that N¥(B-8)Tx » N0, x"s™! x Bp2(e;) AW ™Z) for each x in RP.

Since B7, Bll and B12 show that

N
- 2.-1
tim( I 14,1157 14,117 = o,
Nooo j=]

it is easy to see that the criterion is met. 0
Recall that A(Y) = EW'(el), for commonly used V.

Define

A = T AT T4
o, = exp(h(C; By) )

A

-%) and
ﬁo).

A
(one could use B instead of Then when (§;§) = OP(N

(EO-B) = op(N’*), B7 and B10 imply

sup l%i'"il =o_(1).
isN P

page 12
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Suppose for both ¢ = Y and ¢ = V'
lim E sup{|¢((1+x)(e1+y)) - ¢(e1)|:|x| < e and |y| <€} = o0.
€0
Then it is easy to prove that
N A
-1 A-1 T :
N igl (07" (¥5-C; B)) - d(ep)| = o, (1),
and by the strong law of large numbers,
-1 N
N izl ¢(e;) > Eo(e,).
Moreover, ]
= N N = N
e F 5 ¢ aet -ty d.d'|
1 O A i o U

N
A -1 2
< sup |o.-0.|(N ke 1) = o (1)
sup lo;-0; igl lc; 11 .

(with ||A|| equal to, say, the Euclidean norm of the matrix A),
so

5 p
P GG s
1

Therefore, sz(el) A(yp)-2 S can be consistently estimated, and large sample

confidence ellipsoids and tests of hypotheses for B can be constructed.

5. VN - consistency of preliminary estimators. Since we require that our pre-

liminary estimate satisfy (1.5), we now give conditions which insure that

A

an M-estimate §0 solving

y gihs ¥
VO] Bp) G < 0

nes1Z

i=1
A

satisfy (1.5). This go is not scale equivariant, but this does not affect

the limit distribution of B.

B13. ¢ is odd .

B R ——
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AN

Bl4. 1 js Lipschitz continuous with Lipschitz constant LW

B15. the Radon-Nikodyn derivative y' satisfies E(w(x(e1+y)) - w(xel) -

' (xe )xy) < K|xy|1+a for some K and a>0 and all x and y
Ble. N ¥(o+ 1)|lgl| ~0

N
= 2 2
B17. sup(N 1 ) G 1)||§i|| 1% =
N i=1

B18. the minimum eigenvalue, AN’ of

N
-1 1 T
N .§ o; By (05e)) d.d;

i=1

satisfies lim inf AN > 0.
N->

Theorem 5.1. Under B13 to B18, (1.9) holds.
Proof. We will apply Theorem A.1 with ¢i(e1,r,s) = w(oi(el-r))(so ¢i does
not d 8. e - N¥ TN 1 (3)-
ot depend on s), 8;=0;» k=N ,’Ei”' A(Y,1i) o; EY (0 e,), a7’z 0,
and a{?) left undefined. By B13 and Bl4, (A.3) holds. By B1S, for all r and r'
|, (e)n1) - ¢, (") K o|r-r'|
so that (A.4) and (A.5) hold. Also, (A.5) is implied by B15, and (A.1), (A.2),

(A.7), (A.8), and (A.9) are easily checked. Therefore, for all M>0,

N ) LR
sup N Y(o.(e.-d. A) - N Y(o.e.)
INIEL o U faj’
. w ? Ev! (0.e,) d.d! Al| =0 (1

(b % VS Sl S = T ).

Now (5.1) follows exactly as Jurefkova's (1977) Lemma 5.2, since

' g, = cl (8
Yy~ &8y = 9508y &5 BooB))- o
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b APPENDIX
4 A A A
The following general theorem will be used when studying §0’ 6 and B.
;3 Theorem A.1. Let g; and ki (=giN and kiN) be sequences of positive constants
such that
(A.1) lim (sup k.+ k.g.)) =0
R falp v AR
and
S 2 a3
= <
(A.2) a4 (izl ki + kigi) =c <=

Let ¢i be a function from R3 to Rl satisfying

(A.3) E¢i(e1,0,0) = 0 for all i,

(A.4) lim sup E{sup|¢.(el,r,s ) - ¢.(e.,r',s')|:
K0 i itvi

IA

ll", Ir'ln ISI: IS'I < k and ll"l"l, IS-S'l k6} < Coég

for some C0 and all 6<1 and all i,

(A.5) 0 3;1 E(d(e),T,s) - $(e1,0,0) - A(9,i)r) = o(|r|"*® + |s|1*Y
is

for positive constants A(¢,i) and a>0, and

(A.6) 1im  sup E(d, (e.,7,s) - 6;(e.,0,00)% = 0.
! o e | bR |
r,s»0 1isN

Let agl), aiz), and gis) be functions from R" to Rl, Rl and Rn, respectively,
such that

@7 aM© =0, and
@8 [P - oM mll <k llxyll

for all x and y in Rm, i=1l,...,N, and 2=1,2, or 3. Let §i(=5iN) be elements

of R" satisfying

| (A.9) N'*||§i|| sk .
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For 4 € R", define the process

N
I oo;ceaN@, aP @ an.

- ¥
Uy@®) = N'F ;

1

Then, for all M>0

N
-% xa 1Y
(A.10) su |u,(a) - U,(0) - N A(p,i)a; ' (A)x. || =o0_(1).
Y 1o A izl R e o

Proof of Theorem A.l. Fix M>0. We will show that

oAk ira ()
(A.11) E(Uy(d) - Uy(®) = N _21 A, 1)ay " (B) x;+ 0, (1)
1=

and

(A.12) Uy() - U(0) - E(U(®) - U\(®) =0 (1)

for each fixed A, and that there exists K depending upon M but not § such
that for all 6>0 and all N

(A.13) E sup{||u () - ”N(é*)”’ [1a]|< M, ||a*]|< M, ||a-a*[|< 8} < K§.

Since for any §, we can cover a ball of radius M in R™ with a finite number

of balls of radius §, (A.11), (A.12), and (A.13) prove that for each 6>0,

Mo || |A]ls M

N
lim p[ sup [ [Uy() - U@ - N-*'Zl A, e x| < Kc] .1,
i=

which proves the theorem.

To prove (A.11), note that by (A.3),

-% N
N E(U(8) - Uy (0) =
i=1

N
NEL By epa{l @), a@ @) - ¢,(e,,0,0) 5+ P @),

by (A.1) and (A.8).

(A.14) ||x;+ gis)(A)ll < ZIIEiIl for all large N, and by (A.5),

E(¢i(ei.a§1)(é)- a§2)@9) - ¢i(e1,0,0)) -
A, al @ + ocgk, |18l e

R e e e e R e
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uniformly in i. Therefore

D (1)
E((Uy(&) - Uy(0)) = N .21 A oM @)x;
1=

N
. O(N""Zl(giki)'““ I
i=

§i||)’

and by (A.2) and (A.9),

TR e AT A
oo i R T

N N
2 2, 2. % 25 v
< (giki) (iZIgiki) (iZIki) 7 0(1)'
Thus (A.1) holds.
Next, by (A.14) we have that for N large
Var (U (8) - Uy(0)) <
1Y 3 2 g (1) ) 2
(2N izlgillxill ) sup g E(4(5,05 @), a7 (@) - 0(e1,0,00)"
It follows from (A.4), (A.5), (A.7), and (A.8) that
-2 (1) (2) -
i:ﬁ g; E(;(e;,a77(8), a;77(8)) - ¢,(e;,0,0))" = o(1).
Therefore, (A.12) is proved by applying (A.2). Finally, by (A.14) the RHS of

(A.13) is less than or equal to

N
F L Il 1 B sutloge oV @, afP @) -
1=

o; (e 0l @ny, ol @n|: [1alls m, 18]l M, |]a-8%]|< 8)

which by (A.2), (A.4) to (A.9), and the Cauchy-Schwarz inequality does not exceed

01 "

N
sup 2( § (g,k)%)¥ 8 = 2c o)
i 8

i=1

Therefore (A.13) is verified.
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